Inference of Model
Load and import dataset
clear all; load('data/Density_inference.mat','data'); load('coastlines.mat'); addpath('functions/')
Gneiting = @(dist,time,range_dist,range_time,delta,gamma,beta) 1./( (time./range_time).^(2.*delta) +1 ) .* exp(-(dist./range_dist).^(2.*gamma)./((time./range_time).^(2.*delta) +1).^(beta.*gamma) );
Histogram relatively close to normal distribution -> no transofmration used
figure('position',[0 0 1000 400]);
subplot(1,2,1); histogram(data.us);
subplot(1,2,2); histogram(data.vs);
No clear non-stionarinarity with NNT -> no trend used
figure('position',[0 0 1000 400]);
subplot(2,1,1);plot(data.NNT,data.us,'.k'); ylabel('E-W speed [m/s]');
subplot(2,1,2);plot(data.NNT,data.vs,'.k');ylabel('N-S speed [m/s]');
xlabel('Normalized Night Time (NNT) (-1: sunset | 1: sunrise)');
Average Daily
fmulti.t = data.day;
fmulti.r = 1:data.nrad;
[fmulti.R,fmulti.T]=meshgrid(fmulti.r,fmulti.t);
G = findgroups(data.day_id);
fmulti.Mus = splitapply(@nanmean,data.us,G);
fmulti.Mvs = splitapply(@nanmean,data.vs,G);
fmulti.isnan = isnan(fmulti.Mus);
figure('position',[0 0 1000 400]); hold on;
subplot(2,1,1); imagesc(fmulti.Mus')
subplot(2,1,2); imagesc(fmulti.Mvs')
Block décomposition
fmulti.b = nan(size(fmulti.t));
for i_b=1:numel(data.block.date)
if i_b==numel(data.block.date)
fmulti.b(fmulti.t>=data.block.date(i_b) | fmulti.t<data.block.date(1)) = i_b;
else
fmulti.b(fmulti.t>=data.block.date(i_b) & fmulti.t<data.block.date(i_b+1)) = i_b;
end
end
fmulti.B = repmat(fmulti.b,1,data.nrad);
data.day_b = fmulti.b;
fmulti_poly_t_degree=0;
fmulti_poly_d_degree=1;
X = trend(fmulti.T,data.lat(fmulti.R),data.lon(fmulti.R),fmulti_poly_t_degree,fmulti_poly_d_degree);
fmulti.f_trend = @(t,lat,lon,beta) reshape(trend(t(:),lat(:),lon(:),fmulti_poly_t_degree,fmulti_poly_d_degree) * beta(:), size(t));
fmulti.Mus_n = nan(size(fmulti.Mus)); fmulti.Mvs_n = fmulti.Mus_n;
fmulti.beta_u = nan(fmulti_poly_t_degree + fmulti_poly_d_degree*2 +1 ,numel(data.block.date));
fmulti.beta_v = fmulti.beta_u;
We loop over all block...
for i_b=1:numel(data.block.date)
id = find(~fmulti.isnan & fmulti.B==i_b);
fmulti.beta_u(:,i_b) = ( X(id,:)' * X(id,:) ) \ (X(id,:)' * fmulti.Mus(id) );
fmulti.beta_v(:,i_b) = ( X(id,:)' * X(id,:) ) \ (X(id,:)' * fmulti.Mvs(id) );
fmulti.Mus_n(id) = fmulti.Mus(id)-fmulti.f_trend(fmulti.T(id),data.lat(fmulti.R(id)),data.lon(fmulti.R(id)),fmulti.beta_u(:,i_b));
fmulti.Mvs_n(id) = fmulti.Mvs(id)-fmulti.f_trend(fmulti.T(id),data.lat(fmulti.R(id)),data.lon(fmulti.R(id)),fmulti.beta_v(:,i_b));
end
figure('position',[0 0 1000 400]);
subplot(2,1,1); hold on
for i_b=1:numel(data.block.date)-1
fill([data.block.date(i_b) data.block.date(i_b) data.block.date(i_b+1) data.block.date(i_b+1)],[25 -25 -25 25],data.block.col(i_b,:))
end
fill([min(data.day) min(data.day) data.block.date(1) data.block.date(1)],[25 -25 -25 25],data.block.col(4,:))
fill([data.block.date(end) data.block.date(end) max(data.day) max(data.day) ],[25 -25 -25 25],data.block.col(4,:))
plot(fmulti.T(:),fmulti.Mus(:),'.k');
for i_b=1:numel(data.block.date)
id = find(~fmulti.isnan & fmulti.B==i_b);
t_tmp = sort(unique(fmulti.T(id)));
plot(t_tmp, fmulti.f_trend(t_tmp,mean(data.lat(fmulti.R(id)))*ones(numel(t_tmp),1),mean(data.lon(fmulti.R(id)))*ones(numel(t_tmp),1), fmulti.beta_u(:,i_b)),'-r','Linewidth',2)
end
ylabel('E-W speed [m/s]'); datetick('x'); axis tight;
subplot(2,1,2); hold on
for i_b=1:numel(data.block.date)-1
fill([data.block.date(i_b) data.block.date(i_b) data.block.date(i_b+1) data.block.date(i_b+1)],[25 -25 -25 25],data.block.col(i_b,:))
end
fill([min(data.day) min(data.day) data.block.date(1) data.block.date(1)],[25 -25 -25 25],data.block.col(4,:))
fill([data.block.date(end) data.block.date(end) max(data.day) max(data.day) ],[25 -25 -25 25],data.block.col(4,:))
plot(fmulti.T(:),fmulti.Mvs(:),'.k');
for i_b=1:numel(data.block.date)
id = find(~fmulti.isnan & fmulti.B==i_b);
t_tmp = sort(unique(fmulti.T(id)));
plot(t_tmp, fmulti.f_trend(t_tmp,mean(data.lat(fmulti.R(id)))*ones(numel(t_tmp),1),mean(data.lon(fmulti.R(id)))*ones(numel(t_tmp),1), fmulti.beta_v(:,i_b)),'-r','Linewidth',2)
end
ylabel('N-S speed [m/s]'); datetick('x'); axis tight;
figure('position',[0 0 1000 400]); hold on;
[LAT, LON] = meshgrid(floor(min(data.lat)):.1:ceil(max(data.lat)),floor(min(data.lon)):.1:ceil(max(data.lon)));
for i_b=1:numel(data.block.date)
id = find(~fmulti.isnan & fmulti.B==i_b);
subplot(2,4,i_b,'Color',data.block.col(i_b,:)); hold on; h=worldmap([floor(min(data.lat)) ceil(max(data.lat))], [floor(min(data.lon)) ceil(max(data.lon))]);
setm(h,'frame','on','grid','off'); set(findall(h,'Tag','MLabel'),'visible','off'); set(findall(h,'Tag','PLabel'),'visible','off')
surfm(LAT,LON,fmulti.f_trend(mean(fmulti.T(id))*ones(size(LAT)),LAT,LON,fmulti.beta_u(:,i_b)))
plotm(coastlat, coastlon,'k'); geoshow('worldrivers.shp','Color', 'blue')
[G,tmp]=findgroups(fmulti.R(id));
tmp2 = splitapply(@mean,fmulti.Mus(id),G);
scatterm(data.lat(tmp),data.lon(tmp),80,tmp2,'filled','MarkerEdgeColor','k');
title(data.block.date_str{i_b},'Color',data.block.col(i_b,:) ); caxis([min(tmp2) max(tmp2)]); colorbar
subplot(2,4,4+i_b,'Color',data.block.col(i_b,:)); hold on; h=worldmap([floor(min(data.lat)) ceil(max(data.lat))], [floor(min(data.lon)) ceil(max(data.lon))]);
setm(h,'frame','on','grid','off'); set(findall(h,'Tag','MLabel'),'visible','off'); set(findall(h,'Tag','PLabel'),'visible','off')
surfm(LAT,LON,fmulti.f_trend(mean(fmulti.T(id))*ones(size(LAT)),LAT,LON,fmulti.beta_v(:,i_b)))
plotm(coastlat, coastlon,'k'); geoshow('worldrivers.shp','Color', 'blue')
tmp2 = splitapply(@mean,fmulti.Mvs(id),G);
scatterm(data.lat(tmp),data.lon(tmp),80,tmp2,'filled','MarkerEdgeColor','k');
title(data.block.date_str{i_b},'Color',data.block.col(i_b,:) ); caxis([min(tmp2) max(tmp2)]); colorbar
end
figure('position',[0 0 1000 400]);hold on;
[LAT, LON] = meshgrid(floor(min(data.lat)):1:ceil(max(data.lat)),floor(min(data.lon)):1:ceil(max(data.lon)));
for i_b=1:numel(data.block.date)
id = find(~fmulti.isnan & fmulti.B==i_b);
subplot(1,4,i_b,'Color',data.block.col(i_b,:)); hold on; h=worldmap([floor(min(data.lat)) ceil(max(data.lat))], [floor(min(data.lon)) ceil(max(data.lon))]);
setm(h,'frame','on','grid','off'); set(findall(h,'Tag','MLabel'),'visible','off'); set(findall(h,'Tag','PLabel'),'visible','off')
plotm(coastlat, coastlon,'k'); geoshow('worldrivers.shp','Color', 'blue')
[G,tmp]=findgroups(fmulti.R(id));
tmpu = splitapply(@mean,fmulti.Mus(id),G);
tmpv = splitapply(@mean,fmulti.Mvs(id),G);
quiverm(LAT,LON,fmulti.f_trend(mean(fmulti.T(id))*ones(size(LAT)),LAT,LON,fmulti.beta_u(:,i_b)),fmulti.f_trend(mean(fmulti.T(id))*ones(size(LAT)),LAT,LON,fmulti.beta_v(:,i_b)),'k');
quiverm(data.lat(tmp),data.lon(tmp),tmpu,tmpv,'r');
title(data.block.date_str{i_b},'Color',data.block.col(i_b,:) ); caxis([min(tmp2) max(tmp2)]); colorbar
end